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Statistical approach to brittle fracture 
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A general expression for the failure probability of a brittle material is developed by using 
the properties of flaw size distribution and the stress necessary to fracture an inclined 
crack. A comparison is made with Weibull analysis and an expression for the Weibull 
modulus, which is known to be an empirical material constant, is related to the properties 
of the flaw size distribution of a material. Limitations in the application of Weibull 
analysis are also discussed. 

1. Introduction 
Brittle materials exhibit a scatter of failure 
strengths unlike the ductile materials where plastic 
deformation takes place. The mode of fracture in a 
homogenous brittle material depends on the stress 
necessary to propagate an existing critical flaw or 
crack in it. In certain materials flaws can be inclu- 
sions, segregations or any other centres which give 
rise to incompatible deformations. Therefore 
variable sizes, shapes and orientations (with respect 
to the applied load) of the flaws in a material can 
account for the observed scatter of  fracture 
strengths, when nominally identical specimens are 
tested under nominally identical loading conditions. 

A statistical method commonly used to deter- 
mine the strength of brittle materials is that given 
by Weibull [ 1 ] .  In his theory an empirical formula 
of  the form given below is used to relate the prob- 
ability of failure, Pf, with stress, a. 

Pf = 1 - - e xp  -- dV , (1) 
t O o ]  ) 

where rn is a parameter (sometimes termed the 
Weibull modulus) determined experimentally, Vis 
the volume of material, Oo is a normalizing factor, 
and o u is the stress at which there is zero proba- 
bility of failure. It is important to note that m 
which is a material characteristic has no real rela- 
tionship to the micro- or macrostructure of the 
material. In WeibuU analysis it is assumed that 
fracture at the most critical flaw under a given 
stress distribution leads to total failure. Thus, it is 
based on the idea of the '%veakest link of a chain" 

concept as opposed to the parallel concept in which 
the failure of "one chain" causes redistribution of 
load among the other "chains", with total failure 
only taking place when the entire system is no 
longer capable of carrying the redistributed load. 

In this paper a general expression for the failure 
probability of a brittle material is developed for a 
uniaxial tensile loading case by using the properties 
of flaw size distribution of a material and the 
tensile stress required to propagate a crack of a 
given size in a specific orientation to the applied 
toad. This theory is then compared with WeibuU 
analysis and an expression for the Weibull modulus, 
hitherto considered as an empirical constant, is 
related to the properties of the flaw size distribu- 
tion of a material. 

2. Theory 
The stress necessary to propagate an inclined crack, 
as shown in Fig. 1, has been studied by Sih [2] 
and Jayatilaka et  al. [3] using strain energy con- 
cepts. They showed that the initial crack growth 
occurs when the strain energy density of a body 
attains a minimum value. Using this concept, the 
strength, o, of a brittle material is given by 

a2a (2) 

where a is the semi-crack length,/3 is the crack angle 
and v is the Poisson's ratio of the material. L(/3, p) 
is a function of/3 and ~. Equation 2 may be rewritten 
in an analytical form (see Appendix 1) for v = 
0.25 as 
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Figure 1 An inclined crack under a uniform tensile stress. 

1K2 c~-1 (I2a ~--- ~ ICP (3) 

where K m is the critical stress intensity factor of 
the material. 

Let f(a) be the probability density of the semi- 
crack length, where a /> 0. Assuming that any 
crack angle is equally like137, the probability density 
of/3 is 2/7r for 0 ~</3 ~< 7r/2. Th e probability of 
failure, F(o), at a stress, o, for one crack is given 
by 

F(o) = f  f 2f(a)dad/3 (4) 

L(~,v___ )~<cr 2 
tZ 

o</3<~/2. 

From Equations 2 and 3, 

L(/3, V )  = 1 . .2 o-~ �9 ̂ I c ,  (S) 

Experimental results by Poloniecki [4], and 
Poloniecki and Wilshaw [5] suggest that f(a) can 
be closely fitted by the following expression (see 
Fig. 2). 

c n - 1  
a-n _--e/a (6) 

f(a) - (n --2)t e 

where c is a scaling parameter and n is the rate at 
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Figure 2 Distribution of crack size in a material where c/n 
is the mode. 
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Figure 3 Constant stress curve showing limits of integration. 

which the density tends to zero. It is important to 
note from Equation 3 that the strength is controlled 
by the flaws found in the "tail" of the curve. Thus, 
it follows that an error in the function to describe 
the crack size distribution for small a is not serious. 
Equation 4 now takes the form 

F(~) = f  f 2  cn-l a-n e -c/a 
, (n--2)t  dad~ (7) 

KI2c ~< 02 
2 ~  

0 ~</3 < 7r/2. 

Fig. 3 shows the limits of integration. On substi- 
tuting the limits, Equation 7 takes the form 

- I f  ~r/= 2 cn'-'a-n--e- ] 

(8) 
and one integration gives 

-- lrae ----7 (n -- 2)! da. 

(9) 
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For N cracks, the probability of failure, P~, is given 
by 

Pf = 1 - probability of survival of all N cracks 

and hence 

ef  = 1 -- [1 --F(o)] rr. (10) 

Therefore Pf can be calculated for different values 
of o and the mean stress,-6, is given by 

1 

o 

3. Relation with Weibull distribution 
3.1. Expression for m 
The expression for F(o) given in Equation 9 can be 
found using the substitution, u = c/a, and for small 
values of o (o~/Orc)/Kic < 1), 

1027"r 'n-I  o2zrc(n--X) [a4rrac2~] 

(12) 
When N is large, Pr, given by Equation 10, takes 
the form 

Pf ~- 1--exp[--NF(o)].  (13) 

From Equations 12 and 13, it follows that for 
large N and small a 

[ d'-'t.<,2\"-q 
Pf "" 1--exp [--N--~- t-K---~c.J l"  (14) 

The above expression may be written in the form 

P~ = 1 - - e x p [ - k l N ( a )  m-2] (15) 

where kl is a constant for a given material. In 
WeibuU analysis, the expression given in Equation 
1 takes the form, for a uniaxial loading case, when 
au is assumed zero as for most brittle materials, 

Since the number of cracks is proportional to the 
volume of material, the above expression can be 
rewritten as 

ef  = 1 -- exp [--k2N(a)m]. (17) 

Hence the values of rn and n are related by 
Equation 18. k2 in Equation 17 is a constant for a 
given material. 

m = 2n - -2  (18) 

By fitting the curve given by Equation 6 to the 
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results of [5] ,the value o fn  for glass was estimated 
to be 2.67, with a standard error of 0.44, which 
gives m = 3.34 -+- 0.88. 

3.2. Effect  of  number  of  cracks 
In Weibull analysis the expression for mean 
strength,-aw, may be written [6] in the form, 

P is the "gamma" function. Since the volume of 
material is proportional to the number of cracks, 
the above expression takes the form 

a'-w = k3N "-l/m (20) 

where k3 is a constant for a given material. There- 
fore, Equation 20 may be written as 

log a--w = log ka -- 1_ log N. (21) 
m 

Mean strengths, ~, given by Equation 11, were 
evaluated by numerical integration for n = 2, 3, 4 
and 6 (corresponding m = 2, 4, 6 and 10) and are 
plotted in Fig. 4 as a function of N. The corres- 
ponding lines, given by Equation 21 are drawn 
through the end points. Expressions for F(o) for 
each case are given in Appendix 2. 

It is worth noting that changing the length scale 
c in the normalized mean stress,-a~/(Trc)/Kxc, only 
alters the intercepts of the straight lines in Fig. 4, 
and even if c is replaced by the mode, c/n, of the 
assumed flaw size distribution, the lines still occur 
in the same order. 

It is evident from the above results that there is 
a lowest limit for N for a given value of n or m for 
which the Weibull analysis is a good approxima- 
tion. Defining a good approximation to be when 
the relative error (6- -- ~-w)/-ff ~< 0.05, the lowest 
values of N, obtained by inte~olation from the 
results displayed in Fig. 4, are given in Table I. 

The gradients of the straight lines drawn through 
the two end points (N = 600 and 1000) in Fig. 4 
are nearly equal to the "WeibuU slope". These 
values are listed in Table II. Also shown in Table II 

TABLE I Lowest values of N for which WeibuU analysis 
is a good approximation 

n m = 2 n - - 2  N 

2 2 3 
3 4 28 
4 6 60 
6 10 110 



TABLE II Comparison of "slopes" and distribution 
functions due to WeibuU and authors 

n rn Negative 'Mope" MaxlPf, w --Pfl 

Weibull Authors 

2 2 0.500 0.503 0.001 
3 4 0.250 0.255 0.004 
4 6 0.167 0.178 0.014 
6 10 0.100 0.118 0.035 

is the maximum deviation between the probability 
of  failure, Pf,w, calculated from the Weibull 
distribution Equations 16 and 19, and Pf calculated 
from Equation 10 w i t h N =  1000. 

4. Discussion 
The theory described in this paper provides physi- 
cal meaning to the empirical constant used in statis- 
tical methods to evaluate the strength of brittle 
materials. The WeibuU modulus, rn which is hitherto 
understood as an empirical constant can now be 
related to the properties of  flaw size distribution 
in a material. For a given material, this distribution 
may be obtained by non-destructive methods, etc. 
For the assumed flaw size distribution (Fig. 2), the 
variability of crack size in a given volume is greater 
for the smaller values of n, and hence of rn by 

Equation 18. This means that for materials with 
smaller values of  m, a large crack is more likely to 
be present, and so the mean strength for a given 
volume is less. Consequently the theory predicts 
that materials with lower values of m are more 
brittle, which was also found by Mitchell [6],  who 
listed the values of m for different materials. 

The WeibuU analysis is only a particular case of  
the theory described in this paper. It can be seen 
that even for a given material prepared under 
different fabrication methods, in order to produce 
either a change in the total number of cracks in 
the body or to change the crack size distribution, 
the theory described in this paper is easily appli- 
cable. I f  the number of cracks is reduced by de- 
creasing the volume of a material, then it is evident 
from Fig. 4 that below a certain number of cracks 
the Weibull analysis cannot be applied. This par- 
ticularly applies to materials with high rn values 
where certain mininmm number of  cracks must be 
present (given in Table I) in order to apply Weibull 
analysis. In all such cases, the strengths may be 
evaluated using the general expression given in the 
text. Thus, the reasons for the limitations in the 
use of Weibull analysis to predict the strengths of  
brittle materials can be better understood. 
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Figure 4 Logarithmic plot of normalized mean stress (points with each symbol representing a different value of n) in 
terms of number of cracks. Strzight lines correspond to the WeibuU "slopes". 
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Appendix 1. Relation between probability 
of failure P~, and critical stress intensity 
factor, K~c 
From the work of Sih [2] and Jayatilaka et  al. [3], 
the strength of a body containing an inclined crack 
can be related to the critical strain energy density 
factor, Sex, which is a material property (constant) 
by 

o2 a = L(/3, v) 

8ESex 
- T-~vu( /3 ,  v) ( a l )  

where E is the Young's modulus. For an opening 
mode (mode I) fracture, i.e./3 = rr/2, the stress to 
propagate a crack of a given size is minimum. Hence 
u(/3, v) reaches a minimum value given by Umi n. 

Therefore the above equation becomes 

8ESex 
oiZa - Umin (A2) 

l + u  

where o I is the fracture stress in mode I. For mode 
I, the stress can also be related to the critical stress 
intensity factor, Kin,  by the following expression, 
which is commonly used in fracture toughness 
studies, 

Kfc 
012a - (A3) 

lr 

for an infinite body. Therefore from Equations 
A1, A2 and A3 the following expression is ob- 
tained: 

= K~ c lu ( /3 ,  v ) 1 . (A4) o2a 
7r Umin 

Results given by Sih [2] and Jayatilaka et  al. [3] 
for Umin and u(/3) for v = 0.25 (the value used for 
brittle materials) can be used to obtain an analy- 
tical expression for u(/3) by suitable curve fitting. 
For the value of v considered, Equation A4 takes 
the form 

i 2 /3-I. (AS) o 2a = ~-KIc 

Appendix 2. Expressions for F(o )  
Using the substitutions x = o2 nc/K ~c and u = c/a, 
Equation 9 takes the form, 

F(o)  = 1 - u  u"-~e-U 
x ~ du. (A6) 

The above equation can now be integrated for 
different values of n. 

Whenn = 2 ,F(o)  = 1 +l(e-X - 1 )  (AT) 
x 

n = 3,F(cr) = l + e  -x +--2(e- x _ l ) ( A 8 )  
x 

n = 4 , F ( o )  = l + 2 e  - x + ~ e  -x 

3 x 
+ x(e -  -- 1) (A9) 

3 x x2 
n = 6 ,F(o)  = l + 4 e  -x +~-x e -  + ~ e  -~ 

23 x:- + - - e  - x +  (e - x - l )  
24 

( m o )  
where 

x = 027rc/K2c. 
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